Download Soal UN Matematika SMK 2017 Dan Pembahasan
Download Soal UN Matematika SMK 2017 Dan Pembahasan - Pada kesempatan kali ini kami akan memberikan contoh latihan soal bahasa indonesia untuk soal pra ujian nasional yang khususnya untuk sma program studi ipa. Prediksi soal bahasa indonesia ini merupakan soal Tryout UN SMK 2017 oleh dinas pendidikan propinsi DKI Jakarta dan Tangerang.
Contoh soal UN ini Universitas Gunadarma merupakan soal yang valid sebagai bahan latihan UN SMK 2017 karena telah disusun sesuai Kisi-kisi SKL UN 2017. Dan dalam beberapa tahun ini kami telah meninjau dengan keakuratan soal ujian nasional ini yang memang sangat tepat dan tidak meleset dengan soal UN yang sesungguhnya.
Ini bukanlah sebuah bocoran soal ujian nasional, namun ini hanyalah sebuah sarana untuk bekal dalam pembelajaran soal soal ujian nasional yang dapat adik adik latih dirumah untuk persiapan ujian nasional yang sebenarnya.
Contoh soal UN ini Universitas Gunadarma merupakan soal yang valid sebagai bahan latihan UN SMK 2017 karena telah disusun sesuai Kisi-kisi SKL UN 2017. Dan dalam beberapa tahun ini kami telah meninjau dengan keakuratan soal ujian nasional ini yang memang sangat tepat dan tidak meleset dengan soal UN yang sesungguhnya.
Ini bukanlah sebuah bocoran soal ujian nasional, namun ini hanyalah sebuah sarana untuk bekal dalam pembelajaran soal soal ujian nasional yang dapat adik adik latih dirumah untuk persiapan ujian nasional yang sebenarnya.
Soal Siap UN Matematika SMK 2017 Lengkap dengan Pembahasannya
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(1)
Sifat-sifat Pangkat
1. am . an = am + n
2. = am – n
3. (am)n = am.n
4. (ab)m = am bm
5. =
6. a – m =
Sifat-sifat logaritma
1. alog b = c ac = b
2.
3. alog b.c = a log b + a log c
4.
5. a log b . b log c = a log c
6.
7. dengan
( k bil real positif)
1. Bentuk sederhana dari adalah ….
A.
B.
C.
D.
E.
Jawab:
= =
( D )
2. Bentuk sederhana dari adalah ….
A. 2(3 - 2 )
B. 2(3 + 2 )
C. 2(2 + 3 )
D. 2(2 - 3 )
E. 3(3 + 2 )
Jawab:
=
= = = 2(3 - 2 )
( A )
3. Diketahui log 2 = a dan log 3 = b maka log 360 = ...
A. a + b + 1
B. a + 2b + 1
C. 2a + b + 1
D. 2a + 2b + 1
E. a + b + 2
Jawab:
log 360 = log (36 10) = log (2.2.3.3.10)
= log 2 + log 2 + log 3 + log 3 + log 10
= a + a + b + b + 1 = 2a + 2b + 1
( D )
Perhatikan selisih
pangkat dari pembilang
dan penyebut. Jika
pangkat pembilang lebih
besar maka variabel
diletakkan pada
pembilang, tapi jika
pangkat penyebut yang
lebih besar maka
variabel diletakkan di
penyebut. Besar pangkat
sama dengan selisih
pangkat pembilanga dan
penyebut
Metode paling umum untuk menyelesaikan
permasalahan menyederhanakan fungsi rasional
bentuk akar adalah dengan mengalikan penyebut
dengan bilangan sekawannya. Ini dimaksudkan
agar penyebut tidak lagi dalam bentuk akar.
Perhatikan , penyebutnya .
Bilangan sekawan dari adalah
Perkalian bilangan sekawan:
(a + b)(a – b) = a2 – b2 , jadi
( )( ) = = 3 – 2 = 1
Sifat logaritma terkait
yang digunakan
a log bc = alog b + a log c
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(2)
4. Seorang pengusaha batu akik A membeli 4 buah batu jamrud dan 6 buah batu merah rubi
dengan harga Rp 870.000,00 . Sedangkan pengusaha batu akik B membeli 5 buah batu
jamrud dan 6 buah batu merah rubi seharga Rp 960.000,00. Maka harga satu buah batu
jamrud dan dua buah batu merah rubi adalah ….
A. Rp 155.000,00
B. Rp 165.000,00
C. Rp 260.000,00
D. Rp 265.000,00
E. Rp 275.000,00
Jawab:
Misal x = harga 1 buah batu jamrud dan y = harga 1 buah batu merah rubi
4x + 6y = 870.000
5x + 6y = 960.000
––––––––––––––– –
x = 90.000
4(90.000) + 6y = 870.000
360.000 + 6y = 870.000
6y = 510.000 y = 85.000
jadi 1x + 2y = 1(90.000) + 2(85.000) = 90.000 + 170.000 = 260.000
( C )
5. Apabila K = L = dan M = maka 2K – 3L + M = ...
A.
B.
C.
D.
E.
Jawab:
2K – 3L + M = 2 – 3 +
= – + =
( B )
6. Invers matriks = adalah ...
A.
B.
C.
D.
E.
invers dari matriks M = ditullis M– 1
adalah =
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(3)
Jawab:
Invers matriks
= = = = =
( E )
7. Nilai determinan adalah ...
A. 62
B. -4
C. -42
D. -52
E. -54
Jawab:
= 2.5.-2 + 4.6.1 + -1.-3.3 – -1.5.1 – 2.6.3 – 4.-3.-2
= -20 + 24 + 9 + 5 – 36 – 24
= -42
( C )
8. Grafik fungsi y = x2 + 10x yang sesuai adalah ....
Jawab:
Pada pilihan jawaban, kurva-kurva berbeda titik puncaknya, jadi cukup dicari saja titik
puncaknya..
y = x2 + 10x
Syarat Puncak, y’ = 0 = -5x + 10
5x = 10 x = 2
X
Y
-10
-2 0
C. B.
X
-10
2 0
Y
E.
-2 2
Y
X
-10
D.
0 -2
10
Y
X
A. Y
10
0 2 X
Untuk menentukan determinan matriks ordo 3 3
digunakan aturan Sarrus
=
+ + + – – –
Det A = + a11a22a33 + a12a23a31 + a13a21a32 – a13a22a31 – a11a23a32 – a12a21a33
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(4)
y(2) = (2)2 + 10(2) = -10 + 20 = 10
Jadi titik puncak (2, 10)
( A )
9. Diketahui barisan aritmatika dengan suku ke-4 dan suku ke-8 berturut-turut adalah 17 dan
37 maka jumlah 20 suku pertama adalah….
A. 300
B. 450
C. 990
D. 1.000
E. 1.080
Jawab:
U4 = a + 3b = 17
U8 = a + 7b = 37
––––––––––––– –
4b = 20
b = 5
a + 3(5) = 17
a = 2
Jumlah 20 suku pertama
Sn = [2a + (n – 1)b]
S20 = [2(2) + (20 – 1).5]
= 10[4 + 95] = 10[99] = 990
( C )
10. Setiap bulan Hanif menabung di Bank. Pada bulan pertama Hanif menabung sebesar Rp
350.000,00, bulan kedua Rp 375.000,00, dan bulan ketiga Rp 400.000,00. Jika
penambahan uang yang ditabung tetap setiap bulannya, jumlah uang yang ditabung Hanif
selama satu tahun adalah ….
A. Rp 1.125.000,00
B. Rp 4.475.000,00
C. Rp 5.500.000,00
D. Rp 5.850.000,00
E. Rp 6.200.000,00
Teknik mengetahui persamaan sebuah fungsi
kuadrat
1. Persamaan kuadrat yang puncaknya (a, b)
adalah
(y – b)2 = k(x – a)2
k = konstanta yang nilainya dihitung dengan
substitusi titik yang lain
2. Persamaan kuadr at yang akar - akarnya α dan β
y = k[x2 – (α + β)x + αβ]
k = konstanta yang nilainya dihitung dengan
substitusi titik yang lain
Barisan aritmatika
Suku ke - n
U n = a + (n –
n = [2a + (n –
n = ar n – 1
Jumlah tak hingga
S
Note!
Sebuah persamaan kuadrat dengan
fungsi f(x) = ax2 + bx + c
(1). Jika a > 0, kurva terbuka ke
atas
Jika a < 0, kurva terbuka ke
bawah
(2). Titik potong dengan sumbu Y
syarat x = 0, jadi
y = a.02 + b.0 + c = c
(0 , c)
(3). Titik potong dengan sumbu X
syarat y = 0
x dapat dicari dengan
pemfaktoran
(… …)(… …) = 0
(4). Titik puncak (x , y)
x = adalah sumbu simetri
y = f( ) adalah nilai max/min
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(5)
Jawab:
Ini adalah persoalan Deret aritmatika karena terjadi penambahan nilai secara tetap.
a = U1 = 350.000, U2 = 375.000, U3 = 400.000,
b = 375.000 – 350.000 = 25.000
Satu tahun = 12 bulan, n = 12
Sn = [2a + (n – 1)b]
S12 = [2(350.000) + (12 – 1).(25.000)]
= 6[700.000 + 275.000] = 6[975.000] = 5.850.000
( D )
11. Sebuah Mobil dibeli dengan harga Rp 120.000.000,00. Setiap tahun nilai jualnya menjadi
dari harga sebelumnya. Nilai jual setelah dipakai 3 tahun adalah ....
A. Rp24.000.000
B. Rp38.400.000
C. Rp61.440.000
D. Rp76.800.000
E. Rp96.000.000
Jawab:
Ini persoalan Barisan geometri karena memiliki rasio (pembanding) tertentu yaitu
untuk nilai-nilai berikutnya.
a = 120.000.000
r =
U3 = ar2 = 120.000.000 = 120.000.000 = 4.800.000 (16) = 76.800.000
( D )
12. Jumlah deret geometri tak hingga adalah 24 dan suku pertamanya adalah 16. Rasio dari
deret tersebut adalah….
A.
B.
C.
D.
E.
Jawab:
Deret geometri tak hingga dengan S = 24, a = 16
S =
24 =
1 – r = =
r =
( C )
Barisan geometri
Suku ke-n
Sn = ar n – 1
Jumlah tak hingga
S =
Barisan geometri
Suku ke-n
Sn = ar n – 1
Jumlah tak hingga
S =
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(6)
13. Sebuah home industri mainan yang berbahan kayu setiap hari memproduksi dua jenis
mainan tidak lebih 70 buah dengan modal Rp 1.250.000,00. Untuk membuat mainan jenis
pertama memerlukan biaya Rp 25.000,00 dan mainan jenis kedua memerlukan biaya Rp
50.000,00. Jika banyaknya mainan jenis pertama dimisalkan x dan mainan jenis kedua y
maka model matematika dari persoalan tersebut adalah…
A. x + y 70 ; 2x + y 25 ; x 0; y 0
B. x + y 70 ; 2x + y 25 ; x 0; y 0
C. x + y 70 ; 2x + y 25 ; x 0; y 0
D. x + y 70 ; x + 2y 25 ; x 0; y 0
E. x + y 70 ; x + 2y 25 ; x 0; y 0
Jawab:
jenis pertama jenis kedua batas
jumlah produksi x y 70
biaya 25.000 50.000 1.250.000
Misal x = banyak mainan jenis pertama,
y = banyak mainan jenis kedua
x + y 70
25.000x + 50.000y 1.250.000 }:25.000
x + 2y 50
( tidak ada jawab)
14. Daerah yang memenuhi pertidaksamaan 3x + y 12, x + 4y 8, x 0, y 0 adalah…
A. I
B. II
C. III
D. IV
E. V
Jawab:
Mula-mula identifikasikan persamaan garis pada gambar
Tanda berarti daerah di bawah garis
Tanda berarti daerah di atas garis
3x + y 12 yang memenuhi {I, II, IV}
x + 4y 8 yang memenuhi {I, II, III}
x 0, y 0 berarti daerah di kuadran I (+, +) {II, III, IV, V}
yang memenuhi semua kendala adalah daerah II
( B )
15. Seorang pengusaha mainan anak - anak akan membeli beberapa boneka Barbie dan
boneka Masha tidak lebih dari 25 buah. Harga sebuah boneka Barbie Rp 60.000,00 dan
harga sebuah boneka Masha Rp 80.000,00. Modal yang dimiliki pengusaha
Rp1.680.000,00. Jika laba penjualan 1 boneka Barbie Rp 20.000,00 dan 1 boneka Masha
Rp 25.000,00, maka laba maksimumnya adalah ....
A. Rp 400.000,00
B. Rp 480.000,00
C. Rp 545.000,00
D. Rp 550.000,00
E. Rp 580.000,00
Jawab:
Barbie Masha batas
jumlah produksi x y 25
biaya 60.000 80.000 1.680.000
laba 20.000 25.000
12
0
2
4 8
Y
V IV
III II
I
X
3x + y = 12
x + 4y = 8
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(7)
Disusun model matematika:
x + y 25
60.000x + 80.000y 1.680.000 }:20.000 3x + 4y 84
fungsi objektif: (x, y) = 20.000x + 25.000y
Membandingkan gradien
x + y = 25 m = – 1
3x + 4y = 84 m =
(x, y) = 20.000x + 25.000y m = =
Karena besar gradien fungsi objektif ( ) di tengah fungsi-fungsi kendala – 1 dan , atau
dapat disusun – 1 < < maka nilai optimum berada di titik potong kedua garis
kendala.
Titik potong.
x + y = 25 } 4 4x + 4y = 100
3x + 4y = 84 3x + 4y = 84
––––––––––– –
x = 16
(16) + y = 25 y = 9
diperoleh titik potong (16, 9)
Nilai maksimum (x, y) = 20.000x + 25.000y
(16, 9) = 20.000(16) + 25.000(9)
= 320.000 + 225.000 = 545.000
( C )
16. Persamaan garis yang melalui titik (2, – 1) dan tegak lurus garis 3x - 4y + 5 = 0 adalah ....
A. 4x + 3y – 5 = 0
B. 4x + 3y – 11 = 0
C. 4x – 3y – 11 = 0
D. 3x – 4y – 10 = 0
E. 3x – 4y – 2 = 0
Jawab:
3x - 4y + 5 = 0
garis tegaklurus melalui (2, -1)
4x + 3y = 4(2) + 3(-1)
4x + 3y = 8 – 3 = 5
4x + 3y – 5 = 0
( A )
17. Diketahui tan α = – untuk 90 α 180 . Nilai cos α adalah ....
A.
B.
C.
D.
E.
Persamaan garis yang melalui titik (a, b)
dan sejajar garis Ax + By = C
adalah: Ax + By = Aa + Bb
Persamaan garis yang melalui titik (a, b)
dan tegak lurus garis Ax + By = C
adalah: Bx –
Perbandingan Trigonometri
sin =
cos =
tan =
α
depan
samping
miring
Dua garis yang bergradien masing -
masing m1 dan m2
Sejajar jika : m1 = m2
Tegak Lurus jika : m1 m2 = – 1
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(8)
Jawab:
tan = - , dibuat segitiga siku-siku yang sesuai, tanda minus
diabaikan. Baru nanti setelah diperoleh perhitungan tanda dibuat dengan
memperhatikan kuadran. Sisi yang belum ada dilengkapi dulu, yaitu sisi
miring dan dihitung dengan phytagoras.
r = =
cos α = = = = =
Interval 90 α 180 menunjukkan bahwa sudut berada di kuadran II, nilai cosinus di
kuadran II adalah negatif. Jadi jawaban lengkapnya cos α = –
( A )
Untuk menentukan nilai sin, cos atau tan, memang sebaiknya direkonstruksikan sebuah segitiga yang
bersesuaian dengan data yang dimiliki, kemudian panjang sisi yang belum diketahui nilainya dicari
dengan dalil Pythagoras. Walaupun sudut yang terlibat adalah sudut di sembarang kuadran dan
tidak selalu dikuadran I ( 0 < θ < 90 ) tetapi nilainya sama saja. Yang membedakan hanyalah tanda
negatif atau positif.
Perhatikan ilustrasi kurva trigonometri di atas, apabila dirangkum dalam sebuah tabel maka
diperoleh:
kuadran I kuadran II kuadran III kuadran IV
sin x + + – –
cos x + – – +
tan x + – + –
18. Sebuah segitiga PQR dengan panjang PR = 12 m, besar P = 30o dan Q = 45o. Panjang
QR adalah .…
A. 6 m
B. m
C. m
D. 12 m
E. m
Jawab:
Panjang QR dihitung dengan aturan sinus
=
= = = =
( B )
y = Tan x
I
II
III
IV
I
II III
IV
y = Cos x
y = Sin x
I II
III IV
α
1
45 30 P
R
Q
12 m
Aturan sinus.
Digunakan apabila unsur segitiga yang
terlibat dalam perhitungan berupa dua
pasang sisi – sudut yang saling
berhadapan
Aturan cosinus.
Digunakan apabila unsur segitiga yang
terlibat dalam perhitungan berupa tiga
sisi dan sebuah sudut
a2 = b2 + c2 – 2bc cos A
b2 = a2 + c2 – 2ac cos B
c2 = a2 + b2 – 2ab cos C
A c
C
B
b a
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(9)
19. Sebidang tanah berbentuk segitiga ABC seperti pada gambar di bawah. Panjang sisi AB
adalah 40 m, panjang sisi AC adalah 24 m dan besar sudut BAC adalah 30o. Jika tanah itu
dijual dengan harga Rp 500.000,00 untuk setiap meter persegi. Maka tersebut adalah ....
A. Rp 80.000.000,00
B. Rp 100.000.000,00
C. Rp 120.000.000,00
D. Rp 200.000.000,00
E. Rp 240.000.000,00
Jawab:
Rumus Luas Segitiga, yang diketahui dua sisi dan sudut apitnya
L = =
=
= = 240
harga tanah Rp 500.000,00/m2
Harga seluruhnya
= 240 Rp 500.000,00
= Rp 120.000.000,00
( C )
20. Bayangan titik P(– 3 , 5) oleh refleksi terhadap garis y = – x dilanjutkan dengan refleksi
terhadap garis x = 2 adalah ....
A. P’’( – 4, 0)
B. P’’ (– 4, 4)
C. P’’(4 , 4)
D. P’’ (8, 4)
E. P’’ (8, 5)
Jawab:
Sebaiknya digambar agar lebih mudah
Bayangan titik P(-3, 5) direfleksikan terhadap garis y = -x adalah P’( -5, 3)
Bayangan titik P’( -5, 3) direfleksikan terhadap garis x = 2 adalah P’’(9, 3)
Rumus-Rumus Transformasi Sederhana
Titik Asal Transformasi Titik
Bayangan
Penjelasan
(a, b)
translasi =
(a+m, b+n) Menggeser titik (a, b) sejauh m satuan
horizontal dan n satuan vertikal.
m > 0 pergeseran ke kanan
m < 0 pergeseran ke kiri
n > 0, pergeseran ke atas
n < 0 pergeseran ke bawah
(a, b) dilatasi [k, O]
k = faktor skala,
O titik pusat (0, 0)
(ka, kb) Perbesaran k kali dengan pusat perbesaran titik
pusat koordinat O(0, 0)
(a, b) Refleksi y = x
Refleksi y = -x
Refleksi x = k
Refleksi y = k
(b, a)
(-b, -a)
(2k – a, b)
(a, 2k – b)
Pencerminan terhadap garis diagonal y = x
Pencerminan terhadap garis diagonal y = -x
Pencerminan terhadap garis vertikal x = k
Pencerminan terhadap garis horizontal y = k
(a, b) Rotasi +90
Rotasi – 90
(-b, a)
(b, -a)
Rotasi 90 berlawanan arah jarum jam
Rotasi 90 searah putaran jarum jam
(tidak ada jawaban)
A
B
C
A
B
C
40 m
30
24 m
Rumus luas segitiga
L = ab sin C
L = ac sin B
L = bc sin A
P’’(9, 3)
x = 2
y = -x
P(-3, 5)
P’ (-5, 3)
X
Y
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(10)
21. Kubus ABCD.EFGH dengan panjang rusuk 4 cm, maka luas bidang ABGH adalah ....
A. 8 cm2
B. 8 cm2
C. 16 cm2
D. 32 cm2
E. 32 cm2
Jawab:
ABGH sebuah persegi panjang
BG = = 8
AB = 4
Luas ABGH = 8 4 = 32
( E )
22. Kubus ABCD.EFGH panjang sisi 6 cm. Titik P terletak di tengah-tengah rusuk AE. Jarak titik
P ke bidang BDHF adalah ....
A. 3 cm
B. 6 cm
C. 6 cm
D. 12 cm
E. 12 cm
Jawab:
Jarak titik P ke bidang BDHF,
adalah panjang ruas garis yang melalui titik P
dan tegak lurus dengan bidang BDHF.
Titik potong garis yang melalui titik P dengan bidang BDHF berada di pusat bidang BDHF.
Jarak titik P ke bidang BDHF ditunjukkan dengan ruas garis PQ, sama dengan setengah
diagonal bidang EG.
Panjang diagonal bidang EG = =
Jadi setengahnya adalah
( A )
23. Diketahui panjang rusuk kubus ABCD.EFGH adalah 8 cm.
Besar sudut yang terbentuk antara garis AH dan EG
adalah ....
A. 15o
B. 30o
C. 45o
D. 60o
E. 75o
Jawab:
Untuk menghitung besar sudut antara garis AH dan
EG kita geser EG ke AC, sehingga diperoleh sudut
HAC. Perhatikan bahwa segitiga yang terbentuk
adalah HAC.
Segitiga HAC adalah sama sisi, dengan sisi sama
dengan diagonal bidang kubus yaitu r =
Karena sama sisi maka sudutnya 60
( D )
4
E F
D C
B A
H G
4
4
4
8
H G
B A
6
E F
D C
B A
H G
6
6
P
Q
8
E F
D C
B A
H G
8
8
8
E F
D C
B A
H G
8
8
diagonal
bidang
diagonal
ruang
Kubus dengan rusuk = r
diagonal bidang =
diagonal ruang =
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(11)
24. Persamaan lingkaran yang berpusat di titik (2, – 3) dan memiliki jari-jari 7 adalah….
A. x2 + y2 – 4x + 6y + 49 = 0
B. x2 + y2 – 4x + 6y – 49 = 0
C. x2 + y2 – 4x + 6y + 36 = 0
D. x2 + y2 – 4x + 6y – 36 = 0
E. x2 + y2 + 4x – 6y + 62 = 0
Jawab:
Persamaan lingkaran dengan pusat (2, – 3) dan jari-jari 7 adalah
(x – 2)2 + (y + 3)2 = 72
x2 – 4x + 4 + y2 + 6y + 9 = 49
x2 + y2 - 4x + 6y + 13 – 49 = 0
x2 + y2 - 4x + 6y – 36 = 0
( D )
25. Persamaan garis singgung lingkaran x2 + y 2 = 10 yang melalui titik (1, -3) adalah….
A. x – 3y + 10 = 0
B. x – 3y – 10 = 0
C. x + 3y – 10 = 0
D. 3x – y + 10 = 0
E. 3x – y – 10 = 0
Jawab:
Persamaan garis singgung lingkaran x2 + y2 =10 yang melalui titik (1, -3)
px + qy = c
1x + (-3)y = c
x – 3y = 10
x – 3y – 10 = 0
( B )
26. Diagram lingkaran berikut menunjukkan persentase jenis olah raga
siswa di sekolah X. Jumlah siswa seluruhnya sebanyak 1.200
siswa. Banyak siswa yang suka olah raga Basket adalah ....
A 100 siswa
B 108 siswa
C 240 siswa
D 420 siswa
E 432 siswa
Persamaan garis Singgung Pada Lingkaran
Persamaan garis singgung pada lingkaran
x2 + y2 = r2 , melalui titik (p, q)
adalah:
px + qy = r2
Persamaan garis singgung pada lingkaran
(x – a)2 + (y – b)2 = r2 , melalui titik (p, q)
adalah:
(p – a)(x – a) + (q – b)(y – b) = r2
Persamaan garis singgung pada lingkaran
x2 + y2 – 2ax – 2ay + (a2 + b2 – r2) = 0, melalui titik (p, q)
adalah:
px + qy – (p + a)x – (q + b)y + (a2 + b2 – r2) = 0
Volly
36%
Basket
Badminton
20%
Tenis Meja
35%
Persamaan Lingkaran yang berpusat di (a, b), dan
berjari - jari = r
(x – a)2 + (x – b)2 = r2 Bentuk Baku
x2 + y2 – 2ax – 2ay + (a2 + b2 – r2) = 0 Bentuk Umum
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(12)
Jawab:
Volly = 36%
Tenis meja = 35%
Badminton = 20%
––––––––––––––––––– –
Jumlah = 91%
Basket = 100% - 91% = 9%
Jumlah siswa yang suka basket = 1.200 = 108
( B )
27. Berikut ini adalah tabel hasil ulangan matematika kelas XII Teknik Sepeda Motor. Median
data tersebut adalah ....
A 59,25
B 69,00
C 69,50
D 70,00
E 78,68
Jawab:
Ukuran data = n = 3 + 8 + 10 + 11 + 7 + 1 = 40
median = X20 berada di kelas ke-3 (61 – 70)
Tb = tepi bawah kelas median = 60,5
o = frekwensi kumulatif sebelum kelas median = 3 + 8 = 11
= frekwensi kelas median = 10
p = panjang kelas = 10
Me = Tb +
= 60,5 +
= 60,5 + = 60,5 + 9 = 69,5
( C )
28. Simpangan baku dari data 4, 6, 7, 3, 8, 6, 7, 7 adalah ....
A.
B.
C.
D.
E.
Jawab:
Data: 4, 6, 7, 3, 8, 6, 7, 7
Rata-rata = = = 6
Simpangan baku
Nilai Jumlah
41 – 50 3
51 – 60 8
61 – 70 10
71 – 80 11
81 – 90 7
91 - 100 1
Jumlah 40
Rumus Median = Me
Me = Tb +
Tb = tepi bawah kelas Median
n = ∑f i = ukuran data
fk = frekwensi kumulatif sebelum median
f = frekwensi kelas Median
p = panjang kelas
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(13)
s =
=
=
= = = =
( C )
Untuk memudahkan menghitung simpangan baku, kita bisa menggunakan jembatan keledai,
misalnya:
Rasah Sok Kakehan Janji Ben Aman
R = rata-rata = (4 + 6 + 7 + 3 + 8 + 6 + 7 + 7)/8 = 6
S = simpangkan
K = kuadratkan
J = jumlahkan
B = bagi
A = akar
xi 4 6 7 3 8 6 7 7
R 6 6 6 6 6 6 6 6
S -2 0 1 -3 2 0 1 1
K 4 0 1 9 4 0 1 1
J 4 + 0 + 1 + 9 + 4 + 0 + 1 + 1 = 20
B =
A
( C )
29. Nilai rata-rata ulangan matematika 40 siswa di sebuah SMK adalah 78,25. Jika nilai rata
rata matematika siswa putri adalah 82 dan nilai rata-rata matematika siswa putra 72, maka
banyak siswa putra adalah .…
A. 25 siswa
B. 20 siswa
C. 15 siswa
D. 12 siswa
E. 8 siswa
Jawab:
n = 40, , dan , nputra = ...?
(78,25)(40) = (40 – nputra)(82) + nputra(72)
(78,25)(40) = (40)(82) – 82.nputra + 72.nputra
(78,25)(40) = (40)(82) – 10.nputra
10.nputra = (40)(82) – (78,25)(40)
nputra = = 4(82 – 78,25)
= 4 (3,75) = 15
( C )
Rata-Rata Gabungan dua himpunan
jumlah anggota A = nA
jumlah anggota B = nB
rata-rata himpunan A =
rata-rata himpunan B =
Jika digabungkan rata-ratanya menjadi
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(14)
30. Eko memiliki 6 warna cat yang berbeda. Ia akan mencampur 3 cat yang berbeda untuk
mendapatkan warna cat baru. Banyaknya warna cat baru yang bisa dihasilkan adalah ….
A. 8 macam
B. 10 macam
C. 12 macam
D. 15 macam
E. 20 macam
Jawab:
Mengambil 3 objek dari 6 objek adalah peristiwa kombinasi, oleh karena urutan tidak
diperhatikan.
6C3 = = = 20
Misalnya warna semula adalah : ABCDEF
Warna campurannya adalah:
ABC, ABD, ABE, ABF, ACD, ACE, ACF, ADE, ADF, AEF,
BCD, BCE, BCF, BDE, BDF, BEF
CDE, CDF, CDF,
DEF
( E )
31. Dua buah dadu dilempar undi bersama-sama sebanyak satu kali. Peluang munculnya mata
dadu berjumlah 4 atau 5 adalah ….
A
B
C
D
E
Jawab:
Peluang =
Dua dadu dilempar, ukuran ruang sampel = 36
Kejadian jumlah mata dadu 4 atau 5 adalah 13, 22, 31, 14, 23, 32, 41 ada 7 kejadian dari 36
kejadian yang mungkin
Peluang =
( D )
Dua dadu di lempar undi, maka diperoleh ruang
sampel:
1 2 3 4 5 6
1 11 12 13 14 15 16
2 21 22 23 24 25 26
3 31 32 33 34 35 36
4 41 42 43 44 45 46
5 51 52 53 54 55 56
6 61 62 63 64 65 66
Kombinasi n objek diambil r objek
n C r =
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(15)
32. Empat buah uang logam di lempar undi bersamaan sebanyak 96 kali. Frekuensi harapan
muncul kejadian 3 Angka 1 Gambar ( 3A 1G) adalah ….
A. 6 kali
B. 24 kali
C. 32 kali
D. 36 kali
E. 48 kali
Jawab:
Empat keping uang logam dilempar undi. Ruang sampelnya:
4A 0G: AAAA,
3A 1G: AAAG, AAGA, AGAA, GAAA,
2A 2G: AAGG, AGAG, GAAG, AGGA, GAGA, GGAA,
1A 3G: AGGG, GAGG, GGAG, GGGA,
0A 4G: GGGG
Kejadian Munculnya 3A 1G = { AAAG, AAGA, AGAA, GAAA}
Ada 4 kejadian dari 16 kejadian
Peluangnya =
Frekwensi harapan = 96 = 24
( B )
33. Nilai dari adalah ….
A. 0
B. 1
C. 2
D. 3
E. 5
Jawab:
=
=
= = = 5
( E )
34. Turunan pertama dari (x) = adalah ….
A.
B.
C.
D.
E.
Frekwensi harapan
= peluang jumlah percobaan
Menyelesaikan limit fungsi aljabar rasional dapat dengan
cara turunan:
apabila subsitusi x dengan c menghasilkan
maka pembilang dan penyebut diturunkan kemudian
disubstitusi ulang,
=
= = = 5
cara cepat:
Jika diberikan fungsi
’(x) =
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(16)
Jawab:
(x) =
Misal U = -x + 3 U’ = -1
V = 4x – 1 V’ = 4
’(x) = = = = =
( A )
35. Sebuah bola dilemparkan ke atas. Bola itu bergerak sesuai persamaan h(t) = 40t – 5t2.
Tinggi maksimum yang dapat dicapai bola adalah ....
A. 4 meter
B. 5 meter
C. 40 meter
D. 80 meter
E. 100 meter
Jawab:
Ini persoalan maksimum / minimum fungsi
yang bisa dipecahkan dengan turunan.
h(t) = 40t – 5t2
h = tinggi bola (hight), t = waktu (time)
Syarat maksimum: y’ = ’(x) = 0
h’(t) = 40 – 10t = 0
10t = 40
t = 4
h(4) = 40(4) – 5(4)2 = 160 – 80 = 80
( D )
36. Interval fungsi turun dari (x) = x3 – 2x2 +3x + 5 adalah ....
A. 1 < x < 3
B. -1 < x < 3
C. -3 < x < 1
D. x < -3 atau x > 1
E. x < 1 atau x > 3
Jawab:
(x) = x3 – 2x2 +3x + 5
Syarat stationer ’(x) = 0
’(x) = x 2 – 4x + 3 = 0
(x – 1)(x – 3) = 0
x = 1 atau x = 3
Diuji dengan turunan kedua
’’(x) = 2x – 4
’’(1) = 2(1) – 4 = -2 karena ’’(1) negatif deperoleh titik maksimum
’’(3) = 2(3) – 4 = 2 karena ’’(3) positif diperoleh titik minimum
interval yang sesuai: 1 < x < 3
( A )
1 3
+ + + – – – + + +
naik naik turun
Karena fungsi yang diberikan adalah fungsi
kuadrat maka sebenarnya kita bisa
menyelesaikan persoalan ini dengan konsep
fungsi kuadrat
Bandingkan dengan (x) = 40x – 5x2
Titik puncak (x, y) dengan x = dan y = f(x)
Untuk soal tersebut:
x = = 4
y = f(4) = 40(4) – 5(4)2 = 160 – 80 = 80
Titik Puncak (4, 80)
x1 x2
max
min
naik turun naik
y = (x)
fungsi
pangkat tiga
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(17)
37. Hasil dari (3x2 – 2)2 dx adalah ....
A. 36x3 – 24x + C
B. x5 – 4x3 – 4x + C
C. x5 – 4x3 + 4x + C
D. x5 + 4x3 + 4x + C
E. x5 – 4x3 + 4x + C
Jawab:
(3x2 – 2)2 dx = (9x4 – 12x2 + 4) dx
= x5 – 4x3 + 4x + C
( C )
38. Nilai dari adalah ...
A. 25
B. 16
C. -4
D. -24
E. -25
Jawab:
=
= [(2)3 + 5(2)2 + 3(2)] – [(1)3 + 5(1)2 + 3(1)] = [8 + 20 + 6] – [1 + 5 + 3] = 34 – 9 = 25
( A )
39. Luas daerah yang dibatasi oleh kurva y = x2 + 2 dan garis y = x + 4 adalah ....
A. satuan luas
B. 2 satuan luas
C. 4 satuan luas
D. 5 satuan luas
E. 7 satuan luas
Jawab:
y = (x2 + 2) – (x + 4)
y = x2 – x – 2, a = 1, b = -1, c = -2
D = b2 – 4ac = (-1)2 – 4(1)(-2) = 1 + 8 = 9
L = = = = =
( C )
Integral fungsi aljabar:
Kuadrat suku dua
(a + b)2 = a2 + 2ab + b2
(3x2 – 2)2 = (3x2)2 + 2(3x2)(-2) + (-2)2
= 9x4 – 12x2 + 4
Integral Tertentu
= F(b) –
–
2 –
Jawab Latihan Ujian Matematika P 1A DIY
Wagiman, S.Si
(18)
a b
y = f(x)
0
40. Volume benda putar yang terjadi jika daerah yang dibatasi oleh y = 2x – 3, x = 1, x = 3 dan
sumbu X, diputar mengelilingi sumbu X sejauh 360 adalah ....
A. satuan volume
B. satuan volume
C. 4 satuan volume
D. satuan volume
E. satuan volume
Jawab:
y = 2x – 3
a = 1
b = 3
R = y(3) = 2(3) – 3 = 3
r = y(1) = 2(1) – 3 = -1
t = 3 – 1 = 2
V = (R2 + Rr + r2).t
= (32 + 3.(-1) + (-1)2).2
= (9 – 3 + 1).2
= (7).2 = =
( E )
Volume Kerucut Terpancung
V = ( R2 + Rr + r2) t
dengan R = f(b) , r = f(a) , t = b - a
Prediksi Soal Matematika UN SMA/MA 2017 Dan Kunci Jawaban
Untuk paket soal prediksi UN SMK yang lain insyaallah akan diunggah secepatnya, dan soal-soal lainnya bisa anda lihat pada bagian kanan blog ini. Jadi selalu kunjungi blog ini untuk mengetahui update terbarunya ya!
Semoga dengan postingan diatas yang berjudul Download Soal UN Matematika SMK 2017 Dan Pembahasan dapat bermanfaat untuk adik adik semua yang sedang mencari beberapa refrensi ataupun mencari contoh soal ujian nasional ini. Dan semoga dapat bermanfaat untuk belajar dirumah untuk persiapan ujian nasional yang sesunggguhnya. Dan jangan lupa untuk share untuk temannya yang membutuhkan contoh latihan soal ini, karena sebuah kebaikan sekecil apapun nantinya akan mendapatangkan kebaikan pula yang lebih besar untuk diri sobat semuanya.
Belum ada Komentar untuk "Download Soal UN Matematika SMK 2017 Dan Pembahasan"
Posting Komentar