Pembahasan Soal Fungsi Komposisi dan Komposisi Fungsi Kelas 11 SMA
Pembahasan Soal Fungsi Komposisi dan Komposisi Fungsi Kelas 11 SMA - Contoh soal dan pembahasan fungsi komposisi, (f o g)(x), (g o f)(x), (h o go f)(x), materi matematika kelas XI SMA.
Perhatikan contoh-contoh berikut ini:
Soal Nomor 1
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
Soal Nomor 1
Diberikan dua buah fungsi masing-masing f(x) dan g(x) berturut-turut adalah:
f(x) = 3x + 2
g(x) = 2 − x
g(x) = 2 − x
Tentukan:
a) (f o g)(x)
b) (g o f)(x)
a) (f o g)(x)
b) (g o f)(x)
Pembahasan
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
"Masukkan g(x) nya ke f(x)"
sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
"Masukkan f (x) nya ke g (x)"
sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
Soal Nomor 2
Diberikan dua buah fungsi:
f(x) = 3x2 + 4x + 1
g(x) = 6x
Tentukan:
a) (f o g)(x)
b) (f o g)(2)
Pembahasan
Diketahui:
f(x) = 3x2 + 4x + 1
g(x) = 6x
a) (f o g)(x)
= 3(6x)2 + 4(6x) + 1
= 108x2 + 24x + 1
Data:
f(x) = 3x + 2
g(x) = 2 − x
a) (f o g)(x)
"Masukkan g(x) nya ke f(x)"
sehingga:
(f o g)(x) = f ( g(x) )
= f (2 − x)
= 3(2 − x) + 2
= 6 − 3x + 2
= − 3x + 8
b) (g o f)(x)
"Masukkan f (x) nya ke g (x)"
sehingga:
(g o f)(x) = g ( f (x) )
= g ( 3x + 2)
= 2 − ( 3x + 2)
= 2 − 3x − 2
= − 3x
Soal Nomor 2
Diberikan dua buah fungsi:
f(x) = 3x2 + 4x + 1
g(x) = 6x
Tentukan:
a) (f o g)(x)
b) (f o g)(2)
Pembahasan
Diketahui:
f(x) = 3x2 + 4x + 1
g(x) = 6x
a) (f o g)(x)
= 3(6x)2 + 4(6x) + 1
= 108x2 + 24x + 1
= 18x2 + 24x + 1
b) (f o g)(2)
(f o g)(x) = 108x2 + 24x + 1
(f o g)(2) = 108(2)2 + 24(2) + 1
(f o g)(2) = 432 + 48 + 1 = 481
b) (f o g)(2)
(f o g)(x) = 108x2 + 24x + 1
(f o g)(2) = 108(2)2 + 24(2) + 1
(f o g)(2) = 432 + 48 + 1 = 481
Soal Nomor 3
Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ....
A. 4x2 − 12x + 10
B. 4x2 + 12x + 10
C. 4x2 − 12x − 10
D. 4x2 + 12x − 10
E. − 4x2 + 12x + 10
(Dari soal Ebtanas Tahun 1989)
Pembahasan
f(x) = x2 + 1
g(x) = 2x − 3
(f o g)(x) =.......?
Masukkan g(x) nya ke f(x)
(f o g)(x) =(2x − 3)2 + 1
(f o g)(x) = 4x2 − 12x + 9 + 1
(f o g)(x) = 4x2 − 12x + 10
Soal Nomor 4
Diketahui fungsi f(x) = 3x − 1 dan g(x) = 2x2 + 3. Nilai dari komposisi fungsi (g o f)(1) =....
A. 7
B. 9
C. 11
D. 14
E. 17
(Dari soal UN Matematika SMA IPA - 2010 P04)
Pembahasan
Diketahui:
f(x) = 3x − 1 dan g(x) = 2x2 + 3
(g o f)(1) =.......
Masukkan f(x) nya pada g(x) kemudian isi dengan 1
(g o f)(x) = 2(3x − 1)2 + 3
(g o f)(x) = 2(9x2 − 6x + 1) + 3
(g o f)(x) = 18x2 − 12x + 2 + 3
(g o f)(x) = 18x2 − 12x + 5
(g o f)(1) = 18(1)2 − 12(1) + 5 = 11
Soal Nomor 5
Diberikan dua buah fungsi:
f(x) = 2x − 3
g(x) = x2 + 2x + 3
Jika (f o g)(a) = 33, tentukan nilai dari 5a
Pembahasan
Cari (f o g)(x) terlebih dahulu
(f o g)(x) = 2(x2 + 2x + 3) − 3
(f o g)(x) = 2x2 4x + 6 − 3
(f o g)(x) = 2x2 4x + 3
Diketahui f(x) = x2 + 1 dan g(x) = 2x − 3, maka (f o g)(x) = ....
A. 4x2 − 12x + 10
B. 4x2 + 12x + 10
C. 4x2 − 12x − 10
D. 4x2 + 12x − 10
E. − 4x2 + 12x + 10
(Dari soal Ebtanas Tahun 1989)
Pembahasan
f(x) = x2 + 1
g(x) = 2x − 3
(f o g)(x) =.......?
Masukkan g(x) nya ke f(x)
(f o g)(x) =(2x − 3)2 + 1
(f o g)(x) = 4x2 − 12x + 9 + 1
(f o g)(x) = 4x2 − 12x + 10
Soal Nomor 4
Diketahui fungsi f(x) = 3x − 1 dan g(x) = 2x2 + 3. Nilai dari komposisi fungsi (g o f)(1) =....
A. 7
B. 9
C. 11
D. 14
E. 17
(Dari soal UN Matematika SMA IPA - 2010 P04)
Pembahasan
Diketahui:
f(x) = 3x − 1 dan g(x) = 2x2 + 3
(g o f)(1) =.......
Masukkan f(x) nya pada g(x) kemudian isi dengan 1
(g o f)(x) = 2(3x − 1)2 + 3
(g o f)(x) = 2(9x2 − 6x + 1) + 3
(g o f)(x) = 18x2 − 12x + 2 + 3
(g o f)(x) = 18x2 − 12x + 5
(g o f)(1) = 18(1)2 − 12(1) + 5 = 11
Soal Nomor 5
Diberikan dua buah fungsi:
f(x) = 2x − 3
g(x) = x2 + 2x + 3
Jika (f o g)(a) = 33, tentukan nilai dari 5a
Pembahasan
Cari (f o g)(x) terlebih dahulu
(f o g)(x) = 2(x2 + 2x + 3) − 3
(f o g)(x) = 2x2 4x + 6 − 3
(f o g)(x) = 2x2 4x + 3
33 = 2a2 4a + 3
2a2 4a − 30 = 0
a2 + 2a − 15 = 0
2a2 4a − 30 = 0
a2 + 2a − 15 = 0
Faktorkan:
(a + 5)(a − 3) = 0
a = − 5 atau a = 3
(a + 5)(a − 3) = 0
a = − 5 atau a = 3
Sehingga
5a = 5(−5) = −25 atau 5a = 5(3) = 15
Bagaimana jika yang diketahui adalah rumus (f o g)(x) atau (g o f)(x) nya kemudian diminta untuk menentukan f(x) atau g(x) nya, seperti contoh berikutnya:
Soal Nomor 6
Diketahui :
(f o g)(x) = − 3x + 8
dengan
f(x) = 3x + 2
Tentukan rumus dari g(x)
Pembahasan
f(x) = 3x + 2
(f o g)(x) = f (g(x))
− 3x + 8 = 3(g(x)) + 2
− 3x + 8 − 2 = 3 g(x)
− 3x + 6 = 3 g(x)
− x + 2 = g(x)
atau
g(x) = 2 − x
Tengok lagi contoh nomor 1, dimana f(x) = 3x + 2 dan g(x) = 2 − x akan menghasilkan (f o g)(x) = − 3x + 8
Soal Nomor 7
Diberikan rumus komposisi dari dua fungsi :
(g o f)(x) = − 3x
dengan
g(x) = 2 − x
Tentukan rumus fungsi f(x)
Pembahasan
(g o f)(x) = − 3x
(g o f)(x) = g(f(x))
− 3x = 2 − (f(x))
− 3x = 2 − f(x)
f(x) = 2 + 3x
atau
f(x) = 3x + 2
Cocokkan dengan contoh nomor 6.
5a = 5(−5) = −25 atau 5a = 5(3) = 15
Bagaimana jika yang diketahui adalah rumus (f o g)(x) atau (g o f)(x) nya kemudian diminta untuk menentukan f(x) atau g(x) nya, seperti contoh berikutnya:
Soal Nomor 6
Diketahui :
(f o g)(x) = − 3x + 8
dengan
f(x) = 3x + 2
Tentukan rumus dari g(x)
Pembahasan
f(x) = 3x + 2
(f o g)(x) = f (g(x))
− 3x + 8 = 3(g(x)) + 2
− 3x + 8 − 2 = 3 g(x)
− 3x + 6 = 3 g(x)
− x + 2 = g(x)
atau
g(x) = 2 − x
Tengok lagi contoh nomor 1, dimana f(x) = 3x + 2 dan g(x) = 2 − x akan menghasilkan (f o g)(x) = − 3x + 8
Soal Nomor 7
Diberikan rumus komposisi dari dua fungsi :
(g o f)(x) = − 3x
dengan
g(x) = 2 − x
Tentukan rumus fungsi f(x)
Pembahasan
(g o f)(x) = − 3x
(g o f)(x) = g(f(x))
− 3x = 2 − (f(x))
− 3x = 2 − f(x)
f(x) = 2 + 3x
atau
f(x) = 3x + 2
Cocokkan dengan contoh nomor 6.
Soal Nomor 8
Diketahui:
g(x) = x − 2 dan,
(f o g)(x) = 3x − 1
Tentukan rumus f(x)
Pembahasan
Buat permisalan dulu:
x − 2 = a yang pertama ini nanti untuk ruas kiri dan,
x = a + 2 yang kedua ini untuk ruas kanan.
Dari definisi (f o g)(x)
Masukkan permisalan tadi
Soal Nomor 9
Diketahui:
g(x) = x2 + 3x + 2 dan,
(f o g)(x) = 4x2 + 12x + 13
Tentukan rumus f(x)
Pembahasan
Buat dua macam permisalan dulu seperti ini:
Dari definisi (f o g)(x)
Masukkan permisalan tadi
Diketahui:
g(x) = x − 2 dan,
(f o g)(x) = 3x − 1
Tentukan rumus f(x)
Pembahasan
Buat permisalan dulu:
x − 2 = a yang pertama ini nanti untuk ruas kiri dan,
x = a + 2 yang kedua ini untuk ruas kanan.
Dari definisi (f o g)(x)
Masukkan permisalan tadi
Soal Nomor 9
Diketahui:
g(x) = x2 + 3x + 2 dan,
(f o g)(x) = 4x2 + 12x + 13
Tentukan rumus f(x)
Pembahasan
Buat dua macam permisalan dulu seperti ini:
Dari definisi (f o g)(x)
Masukkan permisalan tadi
Soal Nomor 10
Diberikan fungsi-fungsi sebagai berikut:
f(x) = 2 + x
g(x) = x2 − 1
h(x) = 2x
Tentukan rumus dari (h o g o f)(x)
Pembahasan
Bisa dengan cara satu-satu dulu, mulai dari g bundaran f
(g o f)(x) = (2 + x)2 − 1
= x2 + 4x + 4 − 1
= x2 + 4x + 3
Masukkan hasilnya ke fungsi h(x) sehingga didapatkan
(h o g o f)(x) = 2(x2 + 4x + 3)
= 2x2 + 8x + 6
Soal Nomor 11
Diketahui fungsi f(x) = x - 4 dan g(x) = x2 - 3x + 10. Fungsi komposisi (gof)(x) =….
A. x2 - 3x + 14
B. x2 - 3x + 6
C. x2 - 11x + 28
D. x2 -11x + 30
E. x2 -11x + 38
Pembahasan
Dari soal un matematika tahun 2013, dengan cara yang sama diperoleh
Diberikan fungsi-fungsi sebagai berikut:
f(x) = 2 + x
g(x) = x2 − 1
h(x) = 2x
Tentukan rumus dari (h o g o f)(x)
Pembahasan
Bisa dengan cara satu-satu dulu, mulai dari g bundaran f
(g o f)(x) = (2 + x)2 − 1
= x2 + 4x + 4 − 1
= x2 + 4x + 3
Masukkan hasilnya ke fungsi h(x) sehingga didapatkan
(h o g o f)(x) = 2(x2 + 4x + 3)
= 2x2 + 8x + 6
Soal Nomor 11
Diketahui fungsi f(x) = x - 4 dan g(x) = x2 - 3x + 10. Fungsi komposisi (gof)(x) =….
A. x2 - 3x + 14
B. x2 - 3x + 6
C. x2 - 11x + 28
D. x2 -11x + 30
E. x2 -11x + 38
Pembahasan
Dari soal un matematika tahun 2013, dengan cara yang sama diperoleh
Soal Nomor 12
Diketahui:
F(x) = 3x + 5
Diketahui:
F(x) = 3x + 5
Untuk x = 2 tentukan nilai dari:
F(x + 4) + F(2x) + F(x2)
Pembahasan
x = 2, maka
F(x + 4) = F(2 + 4) = F(6) = 3(6) + 5 = 23
F(2x) = F(2⋅2) = F(4) = 3(4) + 5 = 17
F(x2) = F(22) = F(4) = 3(4) + 5 = 17
Jadi:
F(x + 4) + F(2x) + F(x2) = 23 + 17 + 17 = 57
F(x + 4) + F(2x) + F(x2)
Pembahasan
x = 2, maka
F(x + 4) = F(2 + 4) = F(6) = 3(6) + 5 = 23
F(2x) = F(2⋅2) = F(4) = 3(4) + 5 = 17
F(x2) = F(22) = F(4) = 3(4) + 5 = 17
Jadi:
F(x + 4) + F(2x) + F(x2) = 23 + 17 + 17 = 57
Baca Juga : Pembahasan Soal Kapasitor Materi Kelas XII
Semoga dengan postingan diatas yang berjudul Pembahasan Soal Fungsi Komposisi dan Komposisi Fungsi Kelas 11 SMA dapat bermanfaat untuk sobatku semuanya. Dan jangan lupa untuk share postingan ini buat temannya yang membutuhkannya dan cobalah share di facebook ataupun media social lainnya. Sumber : matematikastudycenter.com
Belum ada Komentar untuk "Pembahasan Soal Fungsi Komposisi dan Komposisi Fungsi Kelas 11 SMA"
Posting Komentar